Virginia Tech® home

Yang Shao

Associate Professor
Yang Shao
217 Wallace Hall (0115)
295 West Campus Drive
Blacksburg, VA
24061

My research and teaching is focused on remote sensing digital image processing, GIS, and statistical modelling. I develop advanced image classification algorithms to improve land cover mapping accuracy and monitor land cover change. My image processing algorithms rely heavily on machine learning and target near real-time monitoring. In addition to remote sensing image processing, I study land change patterns and processes using spatial statistical models. I am particularly interested in understanding the drivers and consequences of land cover change. I integrate land change simulation model and ecohydrological models to address these broad questions.

Areas of Expertise:

  • Remote sensing
  • GIS
  • Land use and land cover change
  • Watershed assessment and modeling

Education:

  • Ph.D. - University of North Carolina at Chapel Hill, 2007
  • MS Studies - Nanjing University, 2001
  • B.S. - Nanjing University, 1997

 

  • Modeling in GIS/Advanced Modeling in GIS (GEOG  4084/5084)
  • Programming for Geospatial Research (R or Python) (GEOG 4984/5984G)
  • Land Change Modelling (GEOG 4334/5334)
  • Advanced Topics in Remote Sensing (NR 6104)
  • Remote Sensing and Phenology (GEOG 4374/5374)
  • Jack Tolar. 2024. M.S. Modeling urban growth in Hampton Roads, Va: A statistical and machine learning approach.
    Professor(s): Yang Shao
  • Alexander Miele. 2023. M.S. Linking streamflow trends with land cover change in a Southern U.S. water tower.
    Professor(s): Yang Shao
  • Heng Wan. 2020. Ph.D. Assessing Annual Urban Change and its Impacts on Evapotranspiration.
    Professor(s): Yang Shao
  • Alexander Rosenman. 2020. M.S. Multiscale Remote Sensing Analysis of Vegetation Patterns in an Alpine Environment, Glacier National Park, Montana.
    Professor(s): Yang Shao
  • Callie Lambert. 2018. M.S. patio-Temporal Vegetation Change as Related to Terrain Factors at Two Glacier Forefronts, Glacier National Park, Montana.
    Professor(s): Lynn M. Resler and Yang Shao
  • Ruoyu Zhang. 2018. M.S. An Evaluation of a Data-Driven Approach to Regional Scale Surface Runoff Modelling.
    Professor(s): Yang Shao
  • Andy Skeen. 2017. M.S. Estimating Impervious Surface Cover in Flathead County, Montana.
    Professor(s): Yang Shao
  • Austin Cooner. 2016. M.S. Detection of Urban Damage Using Remote Sensing and Machine Learning Algorithms: Revisiting the 2010 Haiti Earthquake.
    Professor(s): Yang Shao
  • Leyang Feng. 2015. M.S. Sensitivity Analysis of Hot/Cold Pixel Selection in SEBAL Model for ET Estimation.
    Professor(s): Yang Shao
  • Brandon Wheeler. 2015. M.S. Evaluating Time-Series Smoothing Algorithms for Multi-Temporal Land Cover Classification.
    Professor(s): Yang Shao
  • Suwen Zhao. 2015. M.S. Simulating Urban Growth for Baltimore-Washington Metropolitan Area by Coupling SLEUTH Model and Population Projection.
    Professor(s): Yang Shao
  • Haitao Wang. 2014. M.S. Monitoring Vegetation Dynamics in Zhongwei, an Arid City of Northwest China.
    Professor(s): Lisa Kennedy and Yang Shao

Physically Informed, Equitable, & Efficient Hurricane Surge Characterization.
Sponsor: US Army Corps of Engineers 
Investigator(s): Irish (PI), Bensi (Co-PI) and Shao (Co-PI). 
Amount: $500,000
2024-2026

Harmful Algal Bloom (HAB) Study for Smith Mountain Lake. 
Sponsor: Virginia Department of Environmental Quality
Investigator(s): McLaughlin (PI), Shao (Co-PI), Walker (Co-PI), and McGuire (Co-PI).
Amount: $150,000
2024-2025

Mapping school bus depots of the U.S. using machine learning and google earth engine.
Sponsor: World Resources Institute
Investigator(s): Shao (PI).
$40,000
2023

Flood Reduction Potential of Urban Forests in Virginia Beach. Phase II: Stormwater Modeling to Quantify Runoff Reduction. Sposor: City of Virginia Beach 
Investigator(s): Sample (PI), McLaughlin (Co-PI), Shao (Co-PI).
Amount: $60,000
2020-2023

Conserving Urban Forests to Reduce Flooding.
Sponsor: The Nature Conservancy
Investigator(s): McLaughlin (PI), Shao (Co-PI).
Amount: $70,500
2020-2023

  • Ren, J., Shao, Y., & Wang, Y. (2024). Annual Cropping Intensity Dynamics in China from 2001 to 2023. Remote Sensing16(24), 4801.
    https://doi.org/10.3390/rs16244801
  • Ma, B., Shao, Y., Yang, H., Lu, Y., Gao, Y., Wang, X., ... & Wang, X. (2024). Land Cover Mapping in East China for Enhancing High-Resolution Weather Simulation Models. Remote Sensing16(20), 3759. 
    https://doi.org/10.3390/rs16203759
  • Yan, X., Li, J., Shao, Y., Ma, T., Zhang, R., & Su, Y. (2024). Assessing open-pit mining impacts on semi-arid grassland: A framework for boundary and intensity quantification. Journal of Cleaner Production475, 143464. 
    https://doi.org/10.1016/j.jclepro.2024.143464
  • Nourali, Z., Shortridge, J. E., Bukvic, A., Shao, Y., & Irish, J. L. (2024). Simulation of Flood-Induced Human Migration at the Municipal Scale: A Stochastic Agent-Based Model of Relocation Response to Coastal Flooding. Water16(2), 263. 
    https://doi.org/10.3390/w16020263
  • Schneider, M., Winchester, C., Goldman, E., & Shao, Y. (2023). Mapping cocoa and assessing deforestation risk for the cocoa sector in Côte d’Ivoire and Ghana. Technical Note. Washington, DC: World Resources Institute. https://www.wri.org/re search/mapping-cocoa-assessing-deforestation-risk-cocoa-cote-divoire-ghana.
  • Bukvic, A., Mitchell, A., Shao, Y., & Irish, J. L. (2023). Spatiotemporal implications of flooding on relocation risk in rural and urban coastal municipalities. Land Use Policy132, 106754. 
    https://doi.org/10.1016/j.landusepol.2023.106754
  • Islam, M. S., Crawford, T. W., & Shao, Y. (2023). Evaluation of predicted loss of different land use and land cover (LULC) due to coastal erosion in Bangladesh. Frontiers in Environmental Science11, 1144686. 
    https://doi.org/10.3389/fenvs.2023.1144686
  • Mitchell, A., Bukvic, A., Shao, Y., Irish, J. L., & McLaughlin, D. L. (2023). Toward Collaborative Adaptation: Assessing Impacts of Coastal Flooding at the Watershed Scale. Environmental Management71(4), 741-754. 
    https://doi.org/10.1007/s00267-022-01759-9
  • Naurath, B., Irish, J. L., & Shao, Y. (2023). Using an Urban Growth Model Framework to Project the Impacts of Climate Change on Coastal Populations. In World Environmental and Water Resources Congress 2023 (pp. 405-412). 
    https://doi.org/10.1061/9780784484852.0
  • Shao, Y., Lunetta, R., Macpherson, A. J., Luo, J., & Chen, G. (2022). SWAT Modeling of Sediment Yields for Selected Watersheds in the Laurentian Great Lakes Basin. In Geospatial Information Handbook for Water Resources and Watershed Management, Volume I (pp. 177-195). CRC Press.
  • Lunetta, R., Lyon, J. G., Shao, Y., & Ediriwickrema, J. (2022). Monitoring Common Agricultural Cropping Across the US and Canadian Laurentian Great Lakes Basin Watershed Using MODIS-NDVI Data. In Geospatial Information Handbook for Water Resources and Watershed Management, Volume I (pp. 155-175). CRC Press.
  • Hu, Z., Ranganathan, S., Shao, Y., & Deng, X. (2022). Neighborhood VAR: Efficient estimation of multivariate timeseries with neighborhood information. arXiv preprint arXiv:2209.08421https://doi.org/10.48550/arXiv.2209.08421
  • Ren, J., Shao, Y., Wan, H., Xie, Y., & Campos, A. (2021). A two-step mapping of irrigated corn with multi-temporal MODIS and Landsat analysis ready data. ISPRS Journal of Photogrammetry and Remote Sensing176, 69-82. 
    https://doi.org/10.1016/j.isprsjprs.2021.04.007
  • Wan, H., McLaughlin, D., Shao, Y., van Eerden, B., Ranganathan, S., & Deng, X. (2021). Remotely-sensed evapotranspiration for informed urban forest management. Landscape and Urban Planning210, 104069. 
    https://doi.org/10.1016/j.landurbplan.2021.104069
  • Shao, Y., Cooner, A. J., & Walsh, S. J. (2021). Assessing deep convolutional neural networks and assisted machine perception for urban mapping. Remote Sensing13(8), 1523. 
    https://doi.org/10.1016/j.landurbplan.2021.104069
  • Iiames, J. S., Cooter, E., Pilant, A. N., & Shao, Y. (2020). Comparison of EPIC-simulated and MODIS-derived Leaf Area Index (LAI) across multiple spatial scales. Remote sensing12(17), 2764. 
    https://doi.org/10.3390/rs12172764
  • Yan, X., Li, J., Shao, Y., Hu, Z., Yang, Z., Yin, S., & Cui, L. (2020). Driving forces of grassland vegetation changes in Chen Barag Banner, Inner Mongolia. GIScience & Remote Sensing57(6), 753-769. 
    https://doi.org/10.1080/15481603.2020.1794395
  • Resler, L. M., Shao, Y., Campbell, J. B., & Michaels, A. (2020). Land cover and land use change in an emerging national park gateway region: Implications for mountain sustainability. In The Elgar companion to geography, transdisciplinarity and sustainability (pp. 270-292). Edward Elgar Publishing. 
    https://doi.org/10.4337/9781786430106.00026
  • Walsh, S. J., Brewington, L., Laso, F., Shao, Y., Bilsborrow, R. E., Arce Nazario, J., ... & Pizzitutti, F. (2020). Social-ecological drivers of land cover/land use change on islands: A synthesis of the patterns and processes of change. Land Cover and Land Use Change on Islands: Social & Ecological Threats to Sustainability, 63-88. 
    https://doi.org/10.1007/978-3-030-43973-6_3
  • Shao, Y., Wan, H., Rosenman, A., Laso, F. J., & Kennedy, L. M. (2020). Evaluating land cover change on the Island of Santa Cruz, Galapagos Archipelago of Ecuador through cloud-gap filling and multi-sensor analysis. Land Cover and Land Use Change on Islands: Social & Ecological Threats to Sustainability, 167-182.
    https://doi.org/10.1007/978-3-030-43973-6_7
  • Lambert, C. B., Resler, L. M., Shao, Y., & Butler, D. R. (2020). Vegetation change as related to terrain factors at two glacier forefronts, Glacier National Park, Montana, USA. Journal of Mountain Science17(1), 1-15.
    https://doi.org/10.1007/s11629-019-5603-8
  • Wan, H., Shao, Y., Campbell, J. B., & Deng, X. (2019). Mapping annual urban change using time series Landsat and NLCD. Photogrammetric Engineering & Remote Sensing85(10), 715-724. 
    https://doi.org/10.14358/PERS.85.10.715
  • Tran, H. T., Campbell, J. B., Wynne, R. H., Shao, Y., & Phan, S. V. (2019). Drought and human impacts on land use and land cover change in a Vietnamese coastal area. Remote Sensing11(3), 333. 
    https://doi.org/10.3390/rs11030333
  • Poor, E. E., Shao, Y., & Kelly, M. J. (2019). Mapping and predicting forest loss in a Sumatran tiger landscape from 2002 to 2050. Journal of environmental management231, 397-404. 
    https://doi.org/10.1016/j.jenvman.2018.10.065
  • Taff, G.N., Shao, Y., Ren, J.*, and Zhang, R.*, 2018. Remote Sensing Image Classification by Integrating Reject Option and Prior Information. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, in press. 
    https://doi.org/10.1109/JSTARS.2018.2870978
  • Jensen, C.*, McGuire, K., Shao, Y. 2018. Modeling headwater stream networks across multiple flow conditions in the Appalachian Highlands. Earth Surface Processes and Landforms. 
    https://doi.org/10.1002/esp.4431
  • Ren, J.*, Campbell, J.B. and Shao, Y., 2017. Estimation of SOS and EOS for Midwestern US Corn and Soybean Crops. Remote Sensing, 9(7), p.722.
  • Jin, X., Shao, Y., Zhang, Z., Resler, L.M., Campbell, J.B., Chen, G., Zhou, Y., 2017. The evaluation of land consolidation policy in improving agricultural productivity in China. Scientific Report, 7: 2792. 
    https://doi.org/10.1038/s41598-017-03026-y
  • Cooper, B.*, Dymond, R., Shao, Y., 2017. Impervious Comparison of NLCD versus a Detailed Dataset over Time. Photogrammetric Engineering and Remote Sensing, 83(6), 429-437. 
    https://doi.org/10.14358/PERS.83.6.429
  • Shao, Y., Lunetta, R. S., Wheeler, B., Iiames, J. S., & Campbell, J. B. (2016). An evaluation of time-series smoothing algorithms for land-cover classifications using MODIS-NDVI multi-temporal data. Remote Sensing of Environment174, 258-265. 
    https://doi.org/10.1016/j.rse.2015.12.023
  • Shao, Y., Taff, G.N., Ren, J.*, Campbell, J.B. 2016. Characterizing major agricultural land change trends in the Western Corn Belt. ISPRS Journal of Photogrammetry and Remote Sensing, 122, 116-125.
  • Cooner, A.*, Shao, Y, Campbell, J.B. 2016. Automatic Detection of Urban Damage Using Remote Sensing and Machine Learning Algorithms: The 2010 Haiti Earthquake. Remote Sensing, 8(10), 868. 
    https://doi.org/10.1016/j.isprsjprs.2016.10.009
  • Ren, J.*, Campbell, J.B., Shao, Y. 2016. Spatial and Temporal Dimensions of Agricultural Land Use Changes, 2001-2012, East-Central Iowa. Agricultural Systems, 148, Pages 149-158. 
    https://doi.org/10.1016/j.agsy.2016.07.007
  • Chen, G., Glasmeier, A.k., Zhang, M., Shao, Y. 2016. Urbanization and Income Inequality in Post-Reform China: A Causal Analysis Based on Time Series Data. PLoS ONE. 11(7): e0158826. 
    https://doi.org/10.1371/journal.pone.0158826

*student collaborator